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SUMMARY

Measurements of aircraft gas turbine engine performance in the altitude

test facility at RAE(P) are subject to a small amount of uncertainty resulting

from a combination of precision (or random) errors and bias (or systematic)

errors. The limits of the precision errors can be readily calculated by stat-

istical analysis of the results measured during the engine tests. Bias limits

are not directly observable in the test results, but can be predicted by a com-

prehensive assessment of all possible sources of error, which are propagated to

the test results.

Many people find these methods difficult to comprehend and apply and this

Memorandum has been written for their benefit. It is a guide not only for engine

test staff at Pyestock but also for their customers who need to be assured of the

rigorous attention given to identifying and reducing measurement uncertainty.
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3
1 INTRODUCTION
Engine performance measurements in the altitude test facility at Pyestock
are expected to be of ‘good accuracy'. This is a qualitative feeling engendered

by the knowledge that most of the instrumentation is calibrated and the perform-
ance results are scrutinised to catch any bad points as they come off the

computer during the engine tests.

From time to time a complete quantitative assessment of engine test
uncertainty (a better technical word than 'accuracy') is made. This may be a
contractual requirement for a new engine project, or it might be needed for the
calibration of a flight engine for which the calculated uncertainty would be
propagated to the aircraft performance in flight. Another instance might be for
'trouble-shooting' to investigate the cause of an anomalous performance result so
as to identify the most important socurces of error where corrective action may be

applied for best effect.

This Memorandum sets out in fairly simple terms the main features of the
Uncertainty Methodology used at Pyestock. It is largely based on the methodology
of Abernethy and Thompsonl, with some simplification and change of emphasis to
suit local practices and resources. The methodology has also been extended in
one respect to cover graphical effects by which a performance curve is shifted

due to bias errors propagated through the horizontal axis.

Some of the material of the present report comes from experience with the
Uniform Engine Test Programme (UETP)Z™%, in which RAE(P) participated with other

international facilities to test and compare results from a pair of J57 engines.

Some of the phraseology may be unfamiliar, or have special meanings, but it
is important that this be clearly understood. The reader is offered a prelimi-
nary exposure to some of the main terms in the Glossary, immediately ahead of the
Notation. A fuller explanation is given in the main text. Subsequently, it is

hoped, the Glossary will serve as a convenient aide memcire for future use.
2 UNCERTAINTY MODELS

Fig 1 indicates the notional model by which randem (precision) and bias
(systematic) errors occur. In the mind's eye there is a true value whose
position or value is unknown. A fixed kias errcr, J , .iies somewhere within the
range of *B, the bias limits which are centred on the unknown true value. The

bias interval is 2B.
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RANDOM UNCERTAINTY
INTERVAL =2U¢
'\ Urlts
The true value can be outside \
the Random Error limits €
RANDOM
ERROR
x X
- d 31> measurement
TRUE LOWER LARGE UPPER
VLLUE 95% SAMPLE 95°%,
LIMIT AVERAGE LIMIT
BIAS ERROR B J
| .
A typical
single readin
-8 +B 9 9
LOWER TRUE UPPER
BlAS VALUE BIAS
LIMIT { UNKNOWN ) LIMIT
L BIAS INTERVAL =2B J
il b

Fig 1 Notional model of random and blas errors

Random errors, such as € , are scattered around the bias error, following
a 'Normal' or 'Gaussian' distribution. The experimental standard deviation, s ,

of this distribution can be calculated from & sample of n points:
_‘IZ(x-i»? .
s = —. ()

Thence the random uncertainty U, (also known as the 95% confidence
limits), is given as:

U, = 2tges , (2)

where tgc 1is Student's “t", given by statistical tables. It is expected that

95% of the data peints will fall within the limits 2y,




The notation model is only used to establish the concept. Since the true
value is always unknown, it is necessary to work with two practical models,

described below.

ADDITIVE MODEL Uppp = (B + ts)

~89%. Probability of true value in this interval

-ts \ +1s

+B

g\\\\\
¢\\\\\\

] MEAN P—
VALUE MEASUREMENT

ROOT SUM SGUARES MODEL Uggs = B? + (ts)?

95°/s Probability of true value being inthis interval

/ -8 *8 /
-t ™
/ | -ts +1s /
%/ - MEAN — //
°> —
VALUE MEASUREMENT
Fig 2 Practical uncertainty models
Fig 2 illustrates two practical uncertainty models which can be used. Both
of these are centred on the observed mean value, which is always known, unliike
the true value. With the 'additive model’', viz:

*Usgg = * (B + ts) , (%
the bias limits *B are simply added to the outer ends of the random uncer-
tainty limits =%ts

The 'root-sum-sguares' model is:
—
¢ LN [

$U.,,, = * VB + (ts)




This model is more difficult to visualise, but it implies a probability
distribution for bias errors as well as for random errors which are combined as

independent components. For further discussion see Ref S.

Abernethy has shown by Monte Carlo computer simulations, reported in
Appendix D of Ref 1, and confirmed on the Pyestock computer, that 1U,qq usually
produces 99% coverage of experimental points, whereas U, s produces 95%

coverage.

inere has traditionally been a preference for Upg. in the UK and Europe,
but a preference for Uagq in the USA. Either, or both, models can be used
because an important feature o the prediction synthesis methodology is that B

and (ts) components must be kept and reported separately.

The above discussion on bias and precision errors relates to a general
measurement, x , illustrated conventionally in Fig 1 as a value on the horizon-
tal axis. Similar considerations apply to graphical values of y such as SIC
plotted against a correlating result, =z , such as FN as illustrated in Fig 3.
Here, the precision errors are taken to be the values in the y-direction
scattered about the curve fit. The residual standard deviation, RSD takes the
place of the precision index, s . The curve fit (CF) value of y supersedes the
mean value, X , and the separation of CF from the true value (TV) is the bias
error, P . As in Fig 1, the 'notional distribution' of bias errors is centred
on the true value, with the curve fit expected to lie somewhere between the
limits (TV + B) and (TV - B). But, since the true value is unknown, the
'practical distribution' of bias errors is centred on the curve fit, with the

true value expected to lie somewhere within the limits (CF + B) and (CF - B).

The statistical properties of a mean value and of a curve fit are explained

in section 5.
3 THE DEFINED TEST RESULT AND MEASUREMENT PROCESS

The behaviour of errors in real life is very complicated, and sc it is
necessary to set up simplified models before any calculations can be made. 1In
the past, many differ<nt models have been used, which has created great ccrn-
fusion. An ingenious way out of the difficulty is provided by an important
feature of the Abernethy methodology!, known as the ‘Defined Meazsurement Process’
(DMP). This was adopted by RAE(P) in the early 1980s to enable the previous
3-class system of MIDAP® to be converted into the simpler 2-class system of

Abernethy-.
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To apply the DMP, it is first necessary to declare exactly what is the
‘Defined Test Result' of the measurements2. Then any error which appears as
visible scatter in the defined test result is classified as 'Precision’, and any
error which remains constant in the defined result is classified as 'Bias'. The
usual practice at RAE(P) is to declare the defined result to be a single perform-
ance curve, such as SFC wvs FN, obtained in a single run in the test cell. Hence
the scatter about the curve is regarded as indicative of precision errors, while
the hidden constant errors which displace the curve away from the true curve are

regarded as bias errors.

The way in which errors, from every possible source, propagate through the
whole of the measurement system, is briefly described in the following secticns.
It is often found that the errors which behave as precssion errors at some stage
of the measurement process, end up as fixed errors in the defined result - this
is known as ‘error fossilisation' because the previously-live errors have died
out to leave fixed, or dead, bias errors in the result. An example of this is
the random scatter which blurs the position of an instrument calibration curve.
Once such a calibration curve is accepted, the difference between it and the true

curve becomes a fised error, ie bias.

In the UETP exercise’ % some of the other participating facilities adcptesz
different DMPs from that used by RAE(P), and so their classifications of
precision and bias were different from those of RAE(P). For exampie, AElT's
precision class embraced errors which showed random variation at any time

throughout the whole of the UETP exercise in their facility, including the links

with their National Standards. One advantage of the RAE(P) DMP is that precis::on

errors, in the form of observed scatter about the performance curves, are com-
pietely amenable t¢ standard statistical treatment ir the form of regressacrn
analysis, which can be done on-line while the engine is running. This accounts
for all the precision errors that actually exist without the possibility cf ary
of them being overlooked. Another advantage is that the theory of the 'curve
shift effect', explained in section 7, strictly only applies to the RAE(F)

definition of bias,
4 DIRECTION OF APPROACH

The techniques of 'Actual Results Analysis' and 'Prediction Synthesis' are

alternative directions of approach, as indicated in Fig 4.

'Actual Results Analysis®' is an application of statistical methods as can
be found in standard text books. Ref 7 is a popular introduction, Ref 8 is r:r-

rigorous but still readable, while Ref © cuntains details of the regressicr.
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ACTUAL RESULTS ANALYSIS PREDICTION SYNTHESIS
ENGINE TEST RESULTS ESTIMATED ELEMENTAL ERRORS
(Observed Scatter 1. Bias Limits
of Actual Data) 2. Precision {ndices
\J
lnput input
STATISTICAL ANALYSIS ERROR PROPAGATION
Qutput QOutput
Random Error Limit of Curve Fits 1. Bias Limits of Test Resuits, eg. SFC
(RELCF) eg. SFC curve 2 Precision Indices of Test Results, eg. SFC
{Can not be applied to Bias Errors)

Fig 4 Alternative directions of approach for uncertainty assessment

analysis used to establish the random uncertainty of performance curve f:tc.
Actual Results Analysis takes the evidence of data which actually occurs irn the
engine test to estakblish the Random Error Limit of Curve Fit (RELCF). Th:is :=
that band within which the true position of a performance curve would lie uf

there were no bias errcrs. A fuller descripticon is givern in sectacn o

The alternative direction c¢f approach is knowrn as 'Prediceicn Synthes:ico',
which deals mainly with blas errors, but precision errcrs carn alsc be inziulel
The methcdclogy of Arernethy and Thormpscn- is appaied, with some slighe mudifica-
tions and changes cf emphasis, t¢ make uncertainty predicticns. It 1s a proces:
of synthesis because the complete answer 15 built up (ie synthesised! frcr
estimates of the basic elements of uncertainty. A fuller descripticr is guven

secrion €.




10

S STATISTICAL ANALYSIS OF ACTUAL RESULTS
5.1 Properties of mean values and curve fits

A fundamental property of statistics (see Refs 7 to 9) is that the position
of a mean value, X , of 'n' Normally distributed points is established more

tightly than a single point, x . 1Its experimental standard deviation is:

- 1
s{x) = == s{x}
QI‘A

This is indicated in the follcwing sketch

Distribution of S(X) = L S(x)
mean value ,X n

AN
A

Distribution of Six)
single points,x —*—K

x

Fig 5 Probabltity distribution of a mean value

Equation (5) applies strictly to Normal (ie Gaussian) distributions.
Fortunately, engine test data are usually close apprcximations to this - the

Mormality can be checked by statistica. tests "% if there is any doubt.

Erngire test performance results are usually presented graphically in the

form of cne result, y (eg SFC) plotted agains:t a correlating result, z (eg

FN), and a curve 9 is fitted by the method of least squares (see Refs 7 tc 9).

Sc we need t7 deal withh a curve fit, y instead cf a mean value, x as
indicated irn the following Fiag €. YN-te that values along the horizontal axis
(abscissa) as deroted Ly the syrr:. 'z' rather than 'x' because x. is used

for the inpul parameters, the errcrs cf w.ich are propagated to both axes, vy

—
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4 -
y //
MAIN Ve Distribution of
RESULT individual Points,y
{eg.SFC) A
rd
e
égog/’
X, d Distribution ot

Curve Fit,§y

Siy)

e SPEC 2
7~ 1 2

h 4
CORRELATING RESULT (eg. FN)

Fig 6 Probabllity distribution of a curve fit

At any specified value of 2z (SPEC Z) there is a curve fit value, \'

Its experimental standard deviation is:

~ 1 N .
s(y) = RSD [_ + other term: ] R (¢
n

where RSD 1is the residual standard deviation of the points scattered akcut the
curve.
The complete expression for 'other terms' is given in Ref 9. Thus tthe

pcsition of § is established more tightly than that of a single pcin:, y , anz

. . ~ - -
tre improvement is related to the facitcr 1/vn , rather like a mean va.uc. Tre
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95% confidence limits of § , in other words the Random Error lLimits of Curve Fit

(RELCF) are given by:

+ RELCF = # tgssi(y) . (n

These are shown by the inner dashed lines in Fig 6. They are quite close to the
fitted curve in the centre of the graph, but they fan out at the ends of the
data, becoming wide apart for the extrapolations. This latter effect is a useful
safety feature.

Fig 7 shows a typical SFC curve fit from the UETP tests in Cell 3 at
Pyestock. 1In this example the best fit was a quadratic curve, but sometimes a
cubic curve fit is justified. At the SPEC Z value of 19.75 kN for FN, the curve

£it value is y = 29.527 g kN"! s”! with the RELCF values % 0.25%.

DEGREE 2 CURVE FIT (QUADRATI()

FNRD = Z ——

Fig 7 Typical SFC curve fit with RELCF and RELIP lines

SFCRD = TY - BO + B14Z + BERZ® N= 9 POINTS RGD =€.20 %
RELCF = +/- .25 %
RELIP = +/- 2.55 % ;
33} : 4
2 : .
:,
3] : .
NS : .
\ ,
X ! .
39l , -
’fcuaua FIT v
.293271€2 ) AR ey
29:. = R G
i
281 .
|
ert SFEC Z -
| .1875ep22
26!
) = 20 %
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For special 'Contract Tests', which must be agreed between all parties,
these procedures can be incorporated in an Engine Test CodelC. 1In this case the
above analysis is developed so as to control the on-line testing in order to
guarantee that an agreed random uncertainty is actually achieved. Moreover, this
is done with the minimum testing to achieve that goal, by continuous computer
analysis during the testing, taking just enough points (n) to ensure the required

RELCF.
5.2 Random scatter and outlier detection

The statistical properties of mean values and curve fits described in the
preceding section 5.1 assume that the surrounding scatter comes from Gaussian
distributions. The diagrams of Figs 5 and 6 are very much idealised, as though
these random errors were distributed smoothly. However, the real life behaviour
of random errors is much more 'lumpy' than this. Even if there exists a well-
defined background Gaussian distribution, it will be found that random samples
taken from it are always somewhat irregular, especially with samples of small
size. Appendix A shows the sort of experimental distributions that might arise

with such random samples, from which mean values and curve fits are calculated.

In addition to the ragged nature of the actual values that might genuinely
come from Gaussian distributions, there are sometimes a few ‘outliers' super-
imposed that do not properly belong to the bulk of the data. It is important
that these outliers be detected and eliminated from the mean values and curve

fits. Procedures for doing this are fully described in Appendix B.

It is usual for the Grubbs tests to be incorporated in the computer data
acquisition routines to automatically detect and eliminate outliers from the

great number of mean values that are taken for a typical test point at Pyestock.

It is not the current practice to apply computer routines to detect out-
liers in the scatter about the engine performance curve fits, but a possible
procedure is explained in section B.2.2 of Appendix B, whereby this might be dcne

in the future.

The current practice is, briefly, as follows. If the position of the curve
were known exactly, then the 95% confidence limits of the individual points about

it would be given by:

£ CLgc(y) = 2 tgsRSD . (61
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A more rigorous expression, which takes into account the random uncertainty

of the curve, is given by the Random Error Limit of Individual Points:
+ RELIP = =+ [(tgsRSD)2 + RELCF2]R (9)

and these lines are shown on Figs 6 and 7. Since RELCF decreases progressively

as the number of points n increases, it follows that

RELIP — tgsRSD . (10)

Even with a modest number of points (say n = 9 as for the curve £it in
Fig 7) it will be found that the value of RELIP is quite close to tosRSD . With
the actual data shown in Fig 7, the RELCF is 0.25%, the RSD is 0.20% and tgs

is 2.45. Hence from equation (9)

+ RELIP = + [(2.45 X 0.20)2 + 0.252]% = $0.55%

and from equation (10)
*RELIP — $2.45 x 0.20 = 0.49%

which is quite a close approximation.

To complete the Pyestock procedure for outlier detection, we would expect
and accept 1 point in 20 to fall just outside the =*RELIP boundaries, but any
point much further away from the curve would be regarded as an outlier and hence
a candidate for deletion. If deleted, the curve fit would then be recalculated

with one less data point.

If this analysis is done on-line during the engine test, the opportunity
exists for extra points to be taken to compare with the suspect point, to help
the decision whether to reject or not. This procedure follows the principles c&

the Test Codel? mentioned at the end of section 5.1 above.
6 PREDICTION SYNTHESIS
6.1 Preliminary sensitivity survey

It is usual to start with a preliminary 'sensitivity survey' to get some
idea of the sensitivity of the various performance results (R,) such as SFC, t¢
the various 'basic measurements' (x,) such as air meter static pressure (PSA).

An alternative name for x_ is 'input parameter', because it is an input t¢ the
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engine performance calculations. This requires the calculation of the 'influence

coefficients' ©y; (sometimes called 'sensitivity factors'). 1In dimensional
terms:
. Ry
Ox 1 3, (12)

where OR; is the change in the result Ry due to a change dx; in an input.
In principle, it should be possible to evaluate 6yx; by differential calculus,
but the relationship between R; and xji in engine performance calculations is
usually too complicated for this. Instead, 8x; values can conveniently be
found by perturbation of the computer calculations, providing that the engine
performance program has been written. The calculation of these 0y; values is
itself done by computer program. It is more convenient to express the influence
coefficients in relative form:

x; OR
' by 3
Ok; = Ry _a L (13

In practice, not only are different influence coefficients required for

each x; , for each Ry , but also for each flight condition. Thus

L

RESULTS R, ——»
INPUTS X X X oo
L X
X
. S
. GNS$
. A%
e
. W
e

Fig 8 Matrix of influence coefficients

The central column of Fig 9 depicts typical influence coefficients.
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Fig 9 Propagation of bias limits from Input parameters to (SFCRD) at target points
(prediction synthesis for J57 UETP tests In Cell 3, RAE, Pyestock)
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In this example, taken from the UETP exercise in Cell 3, the matrix

consisted of 15 values of x; , 4 values of Ry and 10 flight conditions - a
total of 600 different influence coefficients. Perhaps the biggest problem here
is to display this information in such a way that the reader can taken it in!

The central column of Fig 9 depicts 150 of such influence coefficients in bar

chart form, for the single result of Ry = SFCRD .

Having established these influence coefficients, one can see at a glance
which are the most important input parameters where most attention must be given
to keep the errors down. Fig 9 shows that x5 = PS1 (the engine inlet static

pressure) is the most important item for Ry = SFCRD . At Flight Condition 9 the

influence coefficient is

85 = - 3.5%/% (14)

that is, 1% error in PS1 will create -3.5% error in SFCRD. At the other extreme,
it can be seen from Fig 9 that Barometer error has negligible effect on this

particular result, with the worst influence coefficient at Flight Condition 8 of

9,'(;; = 0.1%/% (15)

that is, 1% error in Barometer will create only 0.1% error in SFCRD. The reason
for this relative immunity to error in Barometer is the beneficial effect of

error~cancellation in the complicated engine performance calculations for SFCRD.

(The left-hand and right-hand columns of Fig 9 are described in the following
section.)
6.2 Complete prediction synthesis

The strategy is laid out in Fig 10. The basic measurements x: (which
were encountered in section 6.1 as input parameters for the Sensitivity Survey)

are now the interface between Step 1 and Step 2.
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STEP 1 STEP 2
INTERFACE
CATEGORIES OF BASIC MEASUREMENTS OUTPUT RESULTS
ELEMENTAL ERROR (INPUT PARAMETERS) {Ry)
SOURCES {X;)
(i)
Ry
[72]
cauBrATION (1) z SFCROD
-
DATA ACQUISITION (2) X1 <
DATA REDUCTION (3) PSA 3
REAL EFFECTS (&) < Ry
© WFRD
W
Q
@~ X2 3 <zt *
APA E . ete
=]
w -
. [+ 4
w
- etc a
. R
o k
@
x'  ——
O
©

STEP 1

BASIC MEASUREMENTS
ELEMENTAL ERROR TABLES

BIAS LIMIT B; = / ZJBUZ

NB Separate tables for each
Basic Measurement (X;)

INFLUENCE COEFFICIENTS
dRg

Skizd—xi-

STEP2
ERROR PROPAGATION TABLES

BIAS LIMIT By = /L, [oxiB{)?

NB Separate calculation for each
Result (Ry)

Fig 10 Error propagation through basic measurements Interface




For Step 1, separate 'elemental error' tables are prepared for each X

Table 1 is an example, where x-

is the test frame load.

assessed under four categories (j) as indicated in Fig 11.

Error sources are

INSTRUMENTATION NON- INSTRUMENTATION
ERROR CATEGORIES
1 2 3 4
CALIBRATION DATA DATA REAL
HIERARCHY ACQUISITION REDUCTION EFFECTS
NAT. STD . EXCIT. VOLTAGE | 1. CURVE FITS | 1. SPATIAL
, AVERAGING
TFR. STD . ELEC. SIMUUN 2. RESOLUTION | 2. FLUCTUATIONS
012
Q LAB. STD . SIGNAL COND'N 3 TEST FRAME
3|3 MECHANICS
b {USUALLY
« WKG. STD . TRANSDUCER NEGLIGIBLE )
I A
o
& MEAS. INST. | S. RECORDING
(ALL OBVIATED
BY END TO END
CALIBRATIONS )
Fig 11 Elemental error sources (for each basic measurement)

Category 1 covers the calibration hierarchy, traceable all the way from

the measuring instrument (a Bofors shear force load cell in Table 1) to the

National Standard at NPL.

one standard with another.

these calibrations,

Fig 12 shows how the original biases are removed by

At each stage the calibration consists of comparing

but in their place there remains a combination of randem

uncertainty with a total standard deviation for the complete calibration

hierarchy of

18
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National Std

Transfer Std

Lab. Std

Working Std

Measuring
Instrument

FULLY CALIBRATED
(ALL CORRECTIONS)

TRUE
VALUE
[Ns ] cor,
(=l = Std. Dev. of(NS-T
}(Ns-'rs) J e a(Ns-Ts)
TS
B COR,
(=2
(T8-L5) S, = Std. Dev. of (Ts - L)
/|
LS
COR
(=3 S, =5td Dey
}(LS-WS) P o(Ls-ws)
ws
COR.
t=4
(Ws -MI) S, =5td Dev of (Ws-MI)
MI ]

BIAS REMOVED BY CALIB)S

SCH =4[S,"Sz"' 531’542

= Precision Index of
Ceolibration Hierarchy

Fig 12 Original blases removed by callbration
(replaced by calibration uncertainty)

MR oLlTE
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However, the residual errors from this calibration hierarchy are propagated

not as random scatter, 1le they are

to the engine test as a single fixed error,
‘fossilised' from random errors into bias errors within the limits
B- = ts; ., B, = tsp, etc (17)

(18€)

Hence
Bca. = VB + B + B + BZ

Fig 13 illustrates how any one stage of the calibration hierarchy may be

analysed. The standard deviation in this case would be

(19)

Sone stage

where ;; is the ith curve fit.

CORRECTION

by=

Ya
Ya NCAL=5
r —Q CALIBRATIONS

/ A _—9 ON DIFFERENT
Y3 /}4@ OCCASIONS

A

/?22
Js ®

x. = NOM READING

SPEC X

Fig 13 Statistical analysis of different calibration lines

In the case of test frame lcad in Takle 1, the calibraticn hierarchy is
guite shcrt, with cnly two stages plus a small basic uncertainty of the Naticnal
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Standard. These elemental bias limits are entered separately in Table 1, because

they will be root-sum-squared down the complete table.

Category 2 is Data Acquisition. Fig 11 shows this conceptually as a
collection of effects in the instrumentation system. However, at Pyestock the
complete effect is always assessed by ‘end-to-end' calibrations of the measuring
instrument against the working standard. In the case of test frame load in
Table 1, data acquisiticn errors are included in the last stage of Category 1 and
the middle item of Category 4. (The important thing is that no item should be

overlooked, but no item counted twice.)

Category 3 is Data Reduction. in Table 1, an elemental bias limit cf

20 N is assessed due to nonlinearity of load calibration.

Category 4 in Fig 11 was introduced at Pyestock to cover important ‘non-
instrumentation’ effects. 1In the case of test frame load, for example, these
real effects are manifestations of test frame mechanics (stray friction, spring
and gravity forces) which are found to be more important than any errors in the
instrumentation. (The Bofors shear force load cell with its fundamental
calibration, traceable to the National Starndard, is responsible for very little

error.)

When all the entries for elemental errcrs are completed for a particular
basic measurement, such as test frame load in Table 1, these elemental bias
limits are combined by root-sum-sguares. In the case of Table 1 this amounts tc¢

41 N.

Step 1 is complete when the separate elemental error tables for each of
the basic measurements have been completed.

Step 2 (see Fig i() consists of propagating the values of B. from the
basic measurements to the test result, R, . It is convenient to do these
calculations in separate tables such as Table 2, one for each flight conditicn.
Values of B; are entered in Table 2 and converted to %. The effect of each
basic measurement is then propagated to each result, Ry , by means of the

appropriate influence coefficient, thus

For example in Table 2, for the resulr cf R, = SFCRD we have
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i x§ Bj (%) Bx; (%/%) Byi (%)
1 PSA 0.06 -0.12 -0.01
2 PA 0.25 -0.12 -0.03
etc

Thence the root-sum-squares combination for all the inputs is

+8, = =.[T 8 (21
i

for the result R, = SFCRD , at Flight Conditicn 1. This process is depicted :in

bar chart form in Fig 9 for the result R, = SFCRD for each of the 10 fligh:

conditions.
7 THE CURVE SHIFT EFFECT

Engine performance results are always presented as graphical correlations
against other suitable parameters. Fcr example, SFC would be correlated agaairns:
Net Thrust. Again, Net Thrust might be correlasted against Pressure Ratic P7.FC
or, alternatively, against ncn-dimensicnal shaft speed, NHNT.. Thus an iscleted

result ¢f Net Thrust is of no value by itself withzut considera

ot

ien of ats

correlating parameter.

The curve shift effect to be described in the present document 1s a
phenomenon caused by bias errors (as defined at RAE(P)) propagated through the
horizontal axis, z . Precision errors of 2z (as defined at RAE(P)) will have
some effect on the scatter of points but, since this is likely tc be small, 1t
has been decided not tc describe it in the present document, in order tc concern-

trate attention on the more important effect of bias errors.

The following three Figures {14, 1%, 16), taken from actual VETF resul::.
illustrate the prctler, while Fig 17 displays the thecry tc be explainel 17 i

text after it.

Fig 14 is an example of a comparison between the perfcormance results {::7
some UETP tests on a J57 engine measured in several international facilities,
displayed as conventional giaphs of Referrcd Hct Tho..t, y = FNRD, vs Fress.::
Ratio, 2 = P7/F2. Unfortunately, with this coenventional presentation, the ey
can hardly see the differerce between facilities. However, a revised disp.lay
Fig 15 shows deviations AFNRD freorm a datum lire, plotted agairst the same I~ i.,

in which the differences betweer. facilities can now be plainly seen. Fig 1€ .
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an alternative revised display, using z = NHRD instead of P7/P2. Comparing
Figs 15 and 16, the pattern of the curves from the various facilities is seen to
be drastically altered by changing the correlating parameter from z = P7/P2 to
z = NHRD, even though the values of y = FNRD are exactly the same. So, it is
the bias errors in P7/P2 (on the one hand) or the bias errors in NHRD (on the

other hand) which make such a big difference to the performance curves of FNRD.

The mechanism of the graphical propagation of errors is presented in
Fig 17, in terms of bias limits. The theory only applies to errors that remain
constant in the performance curve. This is no problem with the DMP adopted by
RAE (P) which regards such errors as bias. However, there would be a problem if
some of these constant errors were regarded as precision, as was done by some

UETP participants.

Errors in the Basic Measurements (xj) can propagate to the curve in three
ways, as depicted in Fig 17. The most obvious route [] is travelled by errors
that only affect 'y', and these limits are calculated by standard Abernethy
methodology. The next route [] is travelled by errors that only affect '2'.
while these latter have no effect on the i{-values of the data points, they do

affect the y-position OF THE CURVE as indicated in Fig 17.

The third route []' ....... []' is followed by errors that affect 'y' and
‘z' simultanecusly. Their complete effect should be fully allowed for as
indicated in Fig 17, BEFORE it is combined by root-sum-squares with the bias
limits from route [] and []. This process yields the 'Bias Limit of Curve Fit',

thus

2 dy1? [ ay 1’
- - -—e . 2
BLCF By,lndep + [ By,com Bz,Com " dz + Bz.indep dz] : (22)

Equation (22) can often be simplified, according to circumstances. Thus,

if the curve slope, dy/dz is small, it reduces simply to

2 2
BLCF By,indep + By,cc:' By,all ! (23

where By ,;: is the total predicted bias limit of y , propagated from all basic

measurements, using standard Abernethy methodology.
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Again, if most of the error in '2' are independent of 'y‘, it becomes

2.

BLCF = Bz + B 24 ] ?
y, indep [ z,indep * dz : @4

Or again, if most of the errors in 'z' are common to 'y', we get

dy
BLCF = <] . (25)

[By.corr - B2,<:<:zm " dz

An example of equation (24) is provided by the curves of FNRD vs P7Q2,
where errors in 'y' and 'z' are practically all independent, and so the bias
limits accumulate almost entirely by root-sum-squares as illustrated in the top

of Fig 18.

The special case of equation (25) as applied to the SFC curves is
illustrated in the bottom half of Fig 18 where the sense of the slope is seen to
have a serious effect on BLCF. Errors in 2z = FNRD are obviously common to
y = SFCRD = WFRD/FNRD via the variable FNRD, and some errors from other sources
are common. Because of this special relationship, the positive limit of By is
always associated with the negative limit cf B, , and vice versa. The conse-
quence is that these bias limits will self-cancel when the slop is negative, but

will build up when the slop is positive.

This self-cancelling effect due to the steep negative slope of the SFC
curves in the UETP exercise at low P2 pressure levels, might explain why the
interfacility spreads of the SFC curves were so surprisingly small at the diffi-

cult high altitude Test Condition 9.

The last diagram at the bottom right of Fig 18, illustrates the build-up of
the common errors in the graphs of WalRD vs NLRD due, in this case, to the
positive slope. The common error here is the temperature, Tl. The group WAIRC
is related to WAIVT1, while NLRD is related to NL/VT1. Hence a positive error in
Tl causes a positive B, co~ and a negative By .o~ which build up in a negative
sense, as indicated in Fig 18. ©On the other hand, a negative error in Tl causes
a negative B, .- and a positive B, .- which build up in a positive sense.

It was suggested in Ref 11 that this important effect of common error in Tl could
be a possible contributor to the so-called 'Cell Effect', of which the main
symptom was an apparent difference on engine airflow between ground level test

beds and altitude cells.
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a) GENERAL CASE WITH INDEPENDENT ERRORS IN y AND z
e [FNRD V.P702

y (POSITIVE SLOPE)
BIAS LIMITS ACCUMULATE BY RSS.

NOTE:-

SEE FI1G.17 FOR COMPLETE
FORMULA FOR BLCF FOR
ALL CASES.

b) SPECIAL CASES WITH COMMON ERROR IN y AND 2

NEGATIVE SLOPE [SFCRD V. FNRD POSITIVE SLOPE [WAIRD V.NLRD
BIAS LIMITS SELF-CANCEL BIAS LIMITS BUILD UP
{MOST ERRORS ARE COMMON) (Tt ERROR IS COMMON)
+ BLCF
'lr'
y
‘ B2,com
BY)com
+ BLCF
-BLCF
By, com
Z,com
- BLCF
—2

Fig 18 Hliustration of extreme cases of curve shifts
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8 HISTORICAL REVIEW OF THE METHODOLOGY

The methodology described in this Memorandum originated in the USA about
15 years agol: At that time a rather different procedure, developed in the UKS,

was used at Pyestock. This latter took account of three classes of error:
(i) short-term random errors,

(ii) errors which are systematic in the short term, but random in the long

term,
(iii) long term systematic errors.

At around the same time, contact was made with Abernethy on SAE E33
committee, where it was realised that both methodologies could be reconciled by
the concept of 'the defined measurement process'. This allowed the 3-class MIDAP
system to be simplified to the 2-class Abernethy system, and so the latter was

introduced at Pyestock.

After several years experience here, culminating in the UETP exercise?™ in
which a J57 engine was tested in several facilities on both sides of the
Atlantic, the most valuable features have been consolidated. The procedures of
‘prediction synthesis' are recognised as essential for assessing bias error
limits, and the discipline of its formal framework helps to ensure that no source
of error is overlooked, but none counted twice. A particularly useful feature is
the separate 'elemental error table' (eg Table 1) for each basic measurement, or
input parameter. These tables, together with the error propagation chart (eg
Fig 9) are especially useful for identifying and tracking down the most important
error sources. On the other hand, the effects of precision errors are considered
to be best left to 'actual results analysis', without the need for the extensive

effort involved in prediction synthesis.

Some aspects of the 'curve shift effect' had been studied at Pyestock more
than a decade ago, with particular regard to Tl errorl:. But it was the stimulus

of the UETP analysis which led to the full understanding of this phenomenon.

To sum up: we now have a good, practical uncertainty methodology which is

understood and appreciated for engine testing in all NATO facilities.
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Appendix A

EXPERIMENT WITH RANDOM NUMBERS TO DEMONSTRATE STATISTICAL
PROPERTIES OF MEAN VALUES AND CURVE FITS

A.l1 Objective of the experiment

When a curve is fitted to 'n' points of two-dimensional data by the method
of least squares, it has to be recognised that the curve is only an estimate of
where <he true curve really is, as obscured by the random scatter of the data.
The fitted curve is the best estimate, but the true curve might be anywhere
within an uncertainty band whose limits can be calculated by analysis of the data
in the form of the Random Error Limits of Curve Fit (+RELCF). Section A.3
demonstrates how well such RELCF calculations might cover a true curve when a

sample of 20 points are analysed.

The statistical properties of a least squares curve are analogous to the
properties of a mean value of a random sample. Since the latter is easier to

explain and understand, this will be discussed first, in section A.2.

In both sections A.2 and A.3 the results are presented in alternative ways.
The first and simplest way is to plot the theoretical limits about the true mean,
or true curve, and note how well these limits enclose the experimental mean, cr
experimental curve. Unfortunately, in practice the true mean and true curve are
usually not known and so it is more instructive to plot the experimental limits
about the experimental mean, or experimental curve, and note how well these

limits enclose the true mean, or true curve.

Thus the theory of the text books is put to the test with an actual sample
of random numbers. In this experiment we know exactly what the true mean value
and true curve really are, but we do not know in advance what values of random
numbers will crop up. When the numbers do appear, it is interesting and
instructive to see how the experimental means and curve fits fall within their

estimated uncertainty bands.
A.2 Statistical properties of mean values

Random number generators will produce a series of numbers (R) from a

rectangular distribution between 0 and 1, thus:
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d
PROBABIL\TY
DENSITY
\\ \\
© 05 1 -
Fig A1 Rectangular distribution of random numbers

All values of R

are equally likely between 0 and 1, with a true mean of

0.5. Not~ that the area under the curve equals 1 (ie total probability = 1).

To generate samples from a Gaussian distribution, we simply take a sequence

of 12 numbers from the above, add them together and subtract the constant 6.00

from the sum:

12
G = (ZR..) - 6.00 .
i=1

It is shown in Ref Al that the resulting number (G) will be a sample from a

Gaussian distribution, with the true mean of 0 and the standard deviation of 1.

Again, the area under the curve equals 1.

random numbers are taken from the generator.)

(Note that © = 1 only when 12

}\ PROB, DENSITY
t7 ae ;
dG C=1_ |
'|
- \ NG
-2 -1 o { 2 7

Fig A2 Gausslan distribution derived from 12 random numbers
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For the present experiment, a series of 20 such values of G were taken
and plotted out in Fig A3. After the first two values of G were available,

their experimental mean was calculated:

- (G + Gy)
G - s

Then after the next value, Gy , arrived, the mean of 3 was calculated:

- (GI + Gg + Gg)
Gy = 3

and so on up to ézo

At each stage, the experimental standard deviation was also calculated:

I - 6)2

n-1 ~

This is an estimate of the standard deviation, the true value of which we

know to be exactly ¢ =1

In the top left of Fig A3 these experimental values of points, G and
means, G , are enclosed by the theoretical limits drawn about the true mean of
zero. Here, the lines at 120 are the 95% confidence limits of the points, G ,

while the 20 limits of mean values are given by:

Gimean) = O(points)
Vn

The 220 limits remain a constant distance from the true mean, and it found
that one out of 20 points falls outside these limits, as expected. The
20 (mean) limits begin quite wide apart where 'n' is small, but converge steadily
as 'n' increases. All the experimental means are seen to lie inside these
limits, while we might have expected one of them to fall outside, although the

mean of 4 is guite near to the upper limit.

The top right of Fig A3 shows the thecretical probably distribution of the

points, as already seen in the text abcve. The thecretical distribution of the

)
<
<

o
w
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mean of 20 points is also shown. This is much tighter than the distribution of

points, but the area under both curves equals 1 (ie total probability = 1).

Now, in a practical situation, the true mean (d) and theoretical standard
deviation (0) would not be known. Instead, we must deal with the experimental
means (5) and experimental standard deviations (s). Hence the bottom left of
Fig A3 shows the experimental 95% limits drawn about the experimental means.

This time it is necessary to use a value of Student's "tgs" instead of the
theoretical factor of 2. An interesting feature is that the *ts 1limits, calcu-
lated just after the wide fourth point arrived, are much wider apart than the
theoretical 12¢ limits - ie with this sample of only n = 4 , including the wide
point, it seemed that a very scattered distribution was being sampled. However,
by the time that n = 20 point had been taken, the #ts limits had tightened such

that 1 out of 20 points fell outside.

The experimental standard deviation of the mean is given by

s (points)
Vn

s (mean) =

and the *ts(mean) limits, drawn about the experimental means, are seen to

enclose the true mean easily.

A histogram of the experimental points is shown at the bottom right ol
Fig A3. This bears a rough resemblance to the theoretical distribution of
points. Noting that 'relative frequency' is the same thing as 'probability', we
expect the area of the histogram to be exactly 1 (as it is) Jjust as for the area

under the curves.

It is important to emphasise the distinction between the use of theoretical
and experimental limits of the mean values. The former is a notional situaticn,
useful for demonstration purposes where we can draw the *20(mean) limits in
advance and then watch the experimental means come along and fall within this
band, as in the present experiment. The latter is the usual practical situation
where the true mean is not known. This time we can only calculate s(mean) in
retrospect, and expect the true mean to lie within the *ts(mean) band drawn

about the experimental means.
A.3 Statistical properties of a curve fit

In principle, it would be possible to show how successive curve fits
evolved as the same size (n) built up from n = § (which is the smallest size

for a quadratic fit, with statistical calculations) to n = 20 . This would
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follow the procedure followed for the mean value results in section A.2 and

Fig A3, but would be too complicated for this Appendix. Instead, let us suppose
that 20 points of (z,y) data had been obtained, with a sample of Gaussian error
the same as Fig A3 superimposed upon the true y values. The results of a quad-
ratic curve fitted by least square to these data are shown in Fig A4. In the top
left of the Figure, the theoretical 20 limits (of individual points) and the
+20 limits (of the curve fit) are drawn about the true curve. As for the mean
value example in Fig A3, it is seen that 1 out of 20 points falls outside these
26 limits, as expected, while the curve fit values all lie within their *20
limits - which is a little better than expected. Note that the *20 limits of

c..rve fit become wider apart as we move towards the ends of the curve.

As before, in a practical situation the true curve and true standard
deviation would not be known. And so it is necessary to draw the experimental
limits about the experimental curve fit. The theoretical standard deviation,

O , is replaced by the experimental RSD and, instead of 120 (of curve fit), we
plot #ts (of curve fit), ie the Random Error Limits of Curve Fit, =*RELCF . To
plot the 95% confidence limits of individual points, the limits #*t.RSD should
strictly be compined with RELCF by root-sum-squares, to give the Random Errcr

Limits of Individual Points:

#RELIP = 2 [(t.RSD)2 + RELCF2] " .

As the number of points, n , incieases, the value of RELCF decreases,
while t.RSD stabilises. 1In fact, with the value of n as high as 20, it is a

good approximation to say

*RELIP = #t,RSD

and these limits are plotted about the curve fit in the bottom half of Fig As4.
It is seen that 1 out of 20 points falls outside the =#t.RSD limits, while the

curve fit values all lie within =*RELCF

In the top right of Fig A4 are toc be seen the smocth theoretical Gaussian
probability distributions, centered ¢n the true curve. The distribution of
points is exactly the same as was shown in the top right of Fig A3 but, instead
cf the distribution of mean values, we now have the distribution of curve fits,
evaluated at twc places - le near the middle of the curve where it is tightest,

ard at the ends of the curve where it is widest.
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The histogram of the experimental distribution of points is shown at the
bottom right of Fig A4, centred on the curve fit. This is the same as the
histogram in Fig A3, centred on the experimental mean of 20 points, with the area

of the histogram equal to 1 exactly (ie total probability = 1).
A.4 Concluding remarks

This experiment has analysed a sample of 20 random numbers from a Gaussian
distribution. At the beginning, the writer did not know what the numbers would
be and, if the experiment were to be repeated, a different of numbers would
appear. In fact, the values in Figs A3 and A4 should never occur again.

However, these numbers do demonstrate the sort of way that mean values and curve
fits are expected to occur within the limits that can be calculated from the data

by statistical principles.

Finally, it should be remembered that this Appendix only deals with the
properties of random errors from a Gaussian distribution - sometimes called
'precision errors'. If any systematic (or bias) errors exist, then their effect

would be superimposed on top of the precision errors.
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NOTATION USED 1IN APPENDIX A

Symbol Description
Ao
A, coefficients of least squares curve fit
Az
G Gaussian random number
n number of values in a sample
P probability, ie relative frequency of an occurrence
R rectangular random number
RELCF random error limit of curve fit
RELIP random error limit of individual points
RSD residual standard deviation
s experimental standard deviation
t Student's statistic (at 95% probability in this Appendix)
Yy ordinate value of a two-dimensional point (vertical axis)
9 curve fit value of y
z abscissa value of a two-dimensional point (horizontal axis)
o theoretical standard deviation (true value)

theoretical mean value (true value)

REFERENCE 1IN APPENDIX A

No. Author Title, etc
Al R.W. Hamming Numerical methods for scientists and engineers.

McGraw Hill, 2nd edition (1973)
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Appendix B
OUTLIER DETECTION

B.1 Outliers from a mean value

Two methods can be recommended, (a) due to ThompsonB! and, (b) due to
GrubbsB2., The former is more active in that it will catch more real wild points,
but it is more prone to reject good points. The latter will reject few good
points, but will not catch as many bad peints. These accept/reject properties
were confirmed by Abernethy using Monte Carlo simulation, giving the results
shown in the following two figures. Hence Grubbs' method can safely be left to
automatic computer operation, but Thompson's method should only be used to 'flag’

possible outliers for further investigation.

\

7 [// -

80 - ‘0 / > 80 [
. // / 40 1%

A 80 5

e Correct Rejection
‘of Outlier

© \ = sme [nCOrrect Rejection
of a Good Point -1 40
A\ e Correct Rejection
\ ot Outlier
AN /A == == incorrect Rejection
20 \ - 20 of a Good Point |
40
N J0 \\ 10 40l
\\v \‘\ —y [
LN=5 =t ~
0 e o 0 . -
2.5 3.0 3.5 4.0 4.5 5.0 2.5 3.0 3.5 4.0 45 5.0
Outlier Location Outlier Location
Number of Stangard Deviations From The Average Number of Standard Deviations From The Average
D 190748 O 10T40
Fig Bl o,B aerror in Thompson Fig B2 a,B error in Grubbs
outlier test (based on outlier test (based on
one outlier in each of one outlier 4in each of
100 samples of sizes 5, 100 samples of sizes 5,
10 and 40) 10 and 40)
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B.1l.1 Thompson's Tau Test

From a sample of n values of x , calculate the mean value X and the

sample standard deviation

Tix; - %)?

® = J—_ -
s P . (B-1)
Note that the divisor here is n , rather than (n - 1). For any suspected
outlier, x; calculate
Ixs - x|
T: = 2 =——— (B-2)
st

The point is an outlier if T3 is greater than the critical value in

Table 1.

As an example, take the n = 20 points of data in Fig A3 of Appendix &,
where we might suspect that point number 4 is an outlier. Thus, (using the

symbol ‘'x' instead of 'G')

1

X 2.307

X = 0.148

s* = 0.844
12.307 - 0.148]
T, 57 2.558

From Table Bl, the critical value is 1.934 for n = 20 at the 5% level cof
significance, hence this point would be flagged as a possible outlier. It is
interesting to note that, in fact, ALL the points in Fig A3 are genuine values
from a Gaussian distribution and so, in this example, Thompson's Tau Test has
been overactive in rejecting a good point! This illustrates the sound advice
that this test should only be used to flag suspect points for further

investigation.
B.1.2 Grubbs' T Test

From a sample c¢f x data, calculate the mean value X and the standard

deviation
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T(x; - X)
-  E— -
s —_— - (B-3)
Note that this time the divisor is the usual (n - 1) rather than n . For

any suspected outlier, xj, calculate

Ty = — (B-4)

The point is an outlier if Tj is greater than the critical value in

Table 2.

Taking the same example from the data in Fig A3, with point number 4

suspected as an outlier, we have

Xxq = 2.307
X = 0.148

s = 0.866

_ 12,307 - 0.148) _
T = T 5ee 2.493

From Table B2, the critical value is 2.56 for n = 20 at the 5%
confidence level, hence the point is correctly NOT classified as an outlier.

Thus Grubbs' test could safely have been left to automatic computer operation.
B.2 Outliers from a curve fit

Outlier detection methods are not so well established for curve fits as
for mean values. However, there will usually be a computer VDU graph available
for inspection, such as Fig 7 in the main text, to help the judgement. The
current practice at Pyestock for examining such scatter is explained first, in
section B.2.1. An alternative method for possible future use is discussed in

section B.2.2.

B.2.1 Current practice at Pyestock for checking outliers f£from curve
fits

The computer program which produces the curve fits such as Fig 7 of the
main text, will draw lines of *RELCF and 2*RELIP on each side of the curve,

where

¥;
tRELIP = %[ (tges;)? + RELCE?) (B-5)
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ie
%
ttossip = 2[(!'-958:)2 + (t9589>2] . (B-6)
Tiy; - )?)2 , , G
where 8y = :;-:*;—:—I- , is the residual standard deviation
P is the highest power of the polynomial
and s; is the standard deviation of the curve fit.
Dealing first with a straight line, we would have
= %
1 (x; - %)?2
8y = 8¢ [—+ - = ] . (B-7)
noFixg - )2
Removing the tgs factor from equation (B-6)
%
sp = [53 + s?] (B-2)
y
1 (x: - %2 % .
- Sr 1l + =+ = - . (B-%)
D Tix: - X2

(Equation (B-9) agrees with a standard formula in Ref B3.)

With the current outlier detection practice at Pyestock, we would expect 1
in 20 points to fall just outside the *RELIP boundaries. For example, point
number 4 in the curve fit shown in Fig A4 of Appendix A would be accepted as a
good point. Any point which fell much further away from the curve would be
suspected as an outlier and hence a candidate for deletion. If deleted, the
curve fit would be recalculated with one less data point, or it might be possitle

to take another point to keep the numbers up.
B.2.2 A possible alternative outlier test for curve fits

Although the current practice for outlier detecticn at Pyestock is as
described in section B.2.1, various alternative methods are becoming availablie.
A good candidate for possible future use, due to Tietjens et alBY, was one of a
collection recommended by Abernethy and Ringhiser3®. This is now described, with
a comment on a tricky piece of philosophy that it contains. Tietjens considers

the theoretical model for a point (x.,y.) deviating from a straight line
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yi o= B+ Poxg 4oy,
where P; and B, are 'true' coefficients and € is a Gaussian error.
The least squares estimate of the line as shown in Fig B3 is

A

y; = b1 + byxj

typical point (x;,y¥;)

X least squares regres. line
V= b, + b,x
=5 2
by

(B-10)

(B-11)

Fig B3 Resldual deviations from regression line

The observed residuals (ie deviations from the line) are

and the residual standard deviation is

. Yer
o ——
" n ~ 2

(B-12)

(B-13)

(B-14)
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Note that there are several alternative symbols for this item

O, = s; = RSD

= ¥z

. 2

si = & [1-1—£L—L_)—] . (8-15)
N Tix; - x)2

This bears an uncanny resemblance to equation (B-9) for the current
Pyestock method, except for the minus signs instead of plus signs! A possible

explanation is as follows.

Returning to equation (B-12)

and applying the rule: 'the variance of a difference is equal to the SUM of the

variances', we get

var(of ej) = var(of y;) + var(of Qi) (B-16)
ie
2 o 2 2 _
8] sy + st (B-17)
therefore sf = sf - SS (B-18)
i
(x: - ¥)?
- 52 -2 [l+ X _h] (B-19)
: N Fx; - k)4
%12
L= X
- sg[l-L_ﬁ..__:’__] (B-20)
: no¥x, - X)?
-k
therefore s, = s [1 - L%] ' (B-21)
no ¥x - x?

which is the same as Tietjens' equation, equation (B-15).

TM P LIT9
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So, it would seem that Tietjens takes s; to be the 'pure' standard
deviation of the residual errors, whereas sjp in equation (B-9) of the Pyestock
method is the predicted standard deviation of the scattered points as augmented

by the uncertainty of the curve fit.

To proceed with Tietjens, the ratio of the maximum deviation to its

standard deviation is found

R = max (B-22)

]

Si

This is compared with critical values in Tables B3. If R exceeds the critical
value, that point is declared to be an outlier, deleted, and then the curve fit

is recalculated.

The above theory can be extended to higher orders of polynomial curve

fits. Thus from equation (B-18)

sio = [s2-42] 4 (B-23)
5 (RELCF I
= RSD¢ - T) . (B-24)

All the values for equation (24) are available from the Pyestock computer

program for polynomial curves up to the cubic.

The ratio for the maximum deviation

R = max {B-22) Dbis

&
s

is then compared with critical values in Tables B4, taken from Ref B6.

This procedure is illustrated by the example of the quadratic curve fit in
Fig A4 of Appendix A. Of the 20 points scattered about the curve, point number 4

is a suspect ocutlier. For this point we have

~ b 0
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¥
se = [o0.952- (2£3)7]" - ¢.90
therefore R = == = 2.55

From Table B4 the critical values are

R z.62 2 17 3.06

and so the suspect point number 4 is declared 'not guilty', even at the 10%
level.
This verdict agrees with that of the current Pyestock method which, by

inspection of points on Fig A4, would accept 1 point in 20 lying just outside the

*tgss limits of points (also called =+ RELIP).
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Tables Bl and B2
TESTING FOR OUTLIERS FROM MEAN VALUES
{(Extracted from Ref Bl) (Extracted from Raef B2)
Table 1 Table 2
Thompson's Tau Rejection values for
Grubbs' Method
Table 2. Rejection Values for Grubbs’
Table 1. Thompson's Tau Method
Sample . Sample
Size Level of Significance Six‘: Level of Significance
N Pm 0% 5% 2% 1% N P - s P = 25% P w e,
3 13968 1.4099 141352 1.414039
] 1.554 1.6080 1.6974 L6 3 ;iz ::: :ig
s 1611 1.787 1.989 19175 P 167 i L5
) 1631 1814 1973 2.0809 s 1.82 ‘189 194
7 1.94 2.02 210
7 1.640 1.848 2.040 2142 bt z 200
8 1644 1.870 2.087 2207 : ;‘1“1’ 2_;3 by
9 1647 1.885 2121 2256 0 218 229 241
10 1.648 1.896 2148 2.294 1 223 238 248
12 229 2.41 255
11 1.648 1.904 2.166 2324 13 233 246 261
12 1.649 1.910 2183 2348 14 237 2.51 2.66
13 1.649 1.915 219 2.368 15 241 2.55 271
14 1.649 1.919 2207 2385 16 2 259 275
15 1.649 1.923 2218 22399 17 247 262 218
18 2.50 265 282
18 1.649 1.926 2224 2411 19 2.53 268 285
17 1.649 1.928 2.231 2422 20 256 2n 288
18 1.649 1931 2237 2432 21 2.58 273 29
19 1.649 1.932 224 2440 22 2.60 2.6 294
20 1.848 1.934 2247 2447 23 262 278 2.96
2 264 280 299
21 1.649 1.938 2.251 2484 23 266 282 301
22 1.649 1.937 2255 2.460 30 2.75 291
23 1.649 1938 2.259 2485 35 282 2.98
k23 1.648 1.940 2262 2470 40 .87 3.04
8 1.649 1.941 2264 2478 45 292 3.09
S0 296 313
26 1.648 1.942 2267 2479 60 3.03 3.20
b1 1.648 1.942 2.269 2483 70 3.09 3.26
28 1.648 1.943 272 2487 80 3.14 331
29 1.648 1.9¢4 2274 2490 90 318 3.35
30 1.648 1.944 2278 2493 100 1.2} 3.38
3 1.648 1.948 227 2.495
32 1.648 1.945 779 2498
-] 1.64485 1.95996 232634 2.57582

~
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Table B3
TESTING FOR A SINGLE OUTLIER IN SIMPLE LINEAR REGRESSION
(Extracted from Ref B4)
Critical Values of Ra for Detecting Ona Qullier in Simpls Linear Regression

Sample
Size (n) as= 10 ams 05 as ,01
4 1.4 1.4 1.l
5 1.69 .71 1.7
6 1.88 1.92 1.97
7 2.01 2.07 2.16
8 2.10 2.19 2.5
9 2.18 2.28 2,43
10 2.2k 2,35 2.53
n 2,30 2.h3 2,64
12 2.35 2.8 2.70
1 2,43 2.57 2.80
16 2.50 2.6 2.92
18 2.56 2.7 2.99
20 2,60 2.76 3.06
24 2.69 2.85 3.17
30 2.79 2.97 3.8
36 2.86 3.03 3.25
L8 2.97 3.15 3.51
] 3.04 J.a 3.50
100 3.22 3.40 3.75
Table B4

OUTLIER TESTING IN POLYNOMIAL REGRESSION
(Extracted from Ref B6)

TauLe 1—Upper Bound for Critical Values for Studentized Residual
(¢ = .10)

g
n T P k] ] 5 3 S 15 75 75
S| 187
6| 2.80 1.89
712.10 2.62 1.906
8
9

2.18 2.12 2.83 1.91

2e24 2.20 2413 2405 1.92

10} 2,30 2.26 2.21 2415 2.06 .92

12} 2,39 2,37 2.33 2.29 2.24 2417 193

14 ] 2647 2445 2442 2439 2.36 2,32 2.19Y 194

6] 2.53 2.5) 2,50 2.47 2.45 2.42 2.34 2.20

16| 2658 2457 2+56 2.54 252 2451 2.44 L35

20| 2,63 2.62 2.61 2459 2653 2.5%6 2.%2 2.46 2.1]

251 2.72 2.72 2.7)1 2470 2469 2.6% 2.66 2.63 2.50

301 2.80 2:.79 2.7¥9 273 R.TT 2,77 2.75 2.73 2.66 2.13
351 2.36 2.85 2.85 2435 2484 284 2.42 2.4} 277 2.5>
4O | 2,91 2.91 2.90 2493 2490 2.9 2.5 2487 T4 2,72
45 ] 295 235 2.95% 2,95 294 2eV4 2.93 2.9 2.90v 2.42
§3 ) 2,99 2,99 2.99 2499 298 2,93 2.U3 2497 295 2.49
62| 3.06 3.P6 3.85 3,05 .05 3I.0N5 3.05 3J.Na 3.03 3.00
730 3.11 3,11 .11 3ed) 3431 3411 3410 3.1 3.0) 3.07
80 3.16 3.16 34156 3415 3415 3.15 3.15 318 J.l4 3ed2
90| 3620 3.20 3,19 3419 3Je19 Ie1Y Ie19 3e19 3eds 3447
10 ) 3423 3.23 3,83 3.23 3,03 J.23 U3 Deg2 Bel2 3.2)

TV P 1170
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Table B4 (concluded)
(a = .05)
n [*}
T 2 3 4 i) 6 3 10 15 28
5| 1eve
6]2.07 193
7219 2,635 1.94
H{2.24 2,28 2,00 1.94
Y2435 2.27 2421 2.10 .95
10 ) 2,42 2.37 2.31 2422 2411 195
12 | 2452 2.49 2,45 2.39 2.33 2:24 1.96
141 2,61 2.56 2.55 2.51 2.47 2.41 2.25 1.96
16 | 2.63 2.66 2463 2.6@ 2+57 2.53 2.43 2.26
131 2.73 2.72 2.70 2.63 2.65 2.62 2.55 2.44
201 2473 2.77 2.76 2474 2472 27D 2464 2.57 2.15
25 | 2449 2.¥4 2.47 2.86 2.44 2.63 2,30 2.76 2.60
AN 2.96 2.96 2495 294 2:93 2,93 2,93 2.8% 2.72 2.17
351 3,03 J.02 3J.82 3401 3,80 3400 2.93 2.97 2.91 2.64
4 ) 303 3.03  3.07 3.07 3.06 3,06 3.05 303 3.80 2.44
451313 3.12 3,12 3412 3411 311 340 3.9) 3.06 2.96
53 [ 3417 3.16 3416 3416 3415 3415 314 3014 3411 3.04
6D 3.23 3,23 J.23 3.23 3,22 3.22 3.22 3.21 3.23 3.15
T 1 3.2) 3.29 3.2% 3.23 3.28 3.2¢ 3.27 3.27 3.26 23.23
491 3.33 3.33 3.33 3433 3.33 3.33 3.32 3.32 3.31 3.29
9371 3.37 3037 3,37 3.37 3437 3.37 3.36 3.3% 3,36 3.34
10 1 3.4l 3,41 3,49 3443 3,40 3443 344D 343 3,39 3.3s
(a = .01)
n 1 _ 2 3 & 5 & L) [Ns) 15 25
S }1.99
6 |2.17 .98
7}2.32 2.17 1.98
6 §2.44 2.32 2.18 1,94
9 |2.54 2.44 2,33 2,18 1.99
10 J2.62 2.55 2.45 2.33 2.18 1,99
12 12476 24780 2.64 2.56 R.46 2.34 1.99
14 |2.86 2.82 2,78 2.72 2.65 2,57 2.35 1.99
16 |2.95 2.92 2.88 2.84 £.79 2,73 2.53 2.35
18 |3.02 3.00 2.97 R.94 2.90 2.85 2.75 2.59
20 |3.03 3.6 T.04 J.01 2.98 2.95 2.87 2.76 R.20
2S5 13,21 J.19 3.18 3.16 3.4 3,12 3.07 3.01 2.73
30 [3.30 3,29 3.2d 3.26 3.25 I.24 I.21 3.17 A.n4a R.21
35 ]13.37 .36 3.35 I.34 3.36 3.I) 2.33 3.23 J.19  2.81%
48 13.43 3.42 3,42 3,41 3.40 3440 3.35 2.36 3,30 3.08
45 [3.48  J.47  3.47 .66 .46 3.45 J.44a J.4I 3.33 I3.2)
S8 [3.52 3.52 3.51 3.%51 351 3.50 .42 3.43 .45 3.4
68 13.60 3.59 3.59 3.59 3,53 3.53 23.57 3.56 .54 .44
70 ]3.65 .65 2.65 3.65 .64 .64 .64 363 3.61 3I.57
B0 [3.70 3.70 3.79 3.70 .69 3.69 3.69 .64 3.67 3.64
90 374 Je74 J07H JeT4 3.T& 374 3,73 3.73 .72 178
182 1378 3473 3478 3477 3477 377 3.TT 2427 3076 .74

N = nunber of cbservations

q = nunber of indepencent veriables (Including count

fitted)

for intercept 47
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Roman symbols

b;
b,

o

o

Q o

RELCF
RELIP
RSD

Greek symbols

N

NOTATION USED IN APPENDIX B
Description

first coefficient in linear regression

second coefficient in linear regression

vertical deviation of point from regression line
number of points

highest power in a polynomial equation

number of coefficients (including the intercept)
ir a r~~'ynomial equation (Table 4)

max ratio of a residual to its standard deviation
random error limit of curve fit

random error limit of individual point

residual standard deviation

Grubbs' standard deviation, with (n - 1) divisor

Thompson's standard deviation, with n divisor

'pure' standard deviation of residuals, used by Tietjens

standarc deviation of individual point
residual standard deviation

standard deviation of curve fit

Student's statistic at 95% confidence
Grubb's statistic

either: a one-dimensional random variable
or: a value of two-dimensional data on the horizontal

an individual value of x
a suspected outlier of x-data
mean value of x-data

a value of two-dimensional data on the vertical axis

an individual value of vy

a curve-fit value of vy

either: type of error due to incorrect rejection
or: level of significance in critical tables

type of error due to incorrect acceptance

first regression coefficient in theoretical model
second regression coefficient in theoretical model
theoretical Gaussian error in regression model
residual standard deviaticon

Thorpsern's tau statistic

axis

53
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Notes:
1 Much of the notation in this Appendix is that of the original

references.

2 The symbols &, » RSD , §; are synonymous.




s e o~

Appendix B

No. Author

Bl W.R. Thompson

B2 F.E. Grubbs

B3 P.G. Moore

Edwards

B4 G.L. Tietjens
R.H. Moore

R.J. Beckman

BS R.B. Abernethy
B.G. Ringhiser

B6 R.E. Lund

REFERENCES FOR APPENDIX B

On a criterion for the rejection of observations and

Title,

etc

55

the distributior of the ratio of the deviation to the

standard deviat

An. Math. Stats.,

Procedures for detecting outlying observations in

samples.

Technometrics,

ion.

11, 1,

6, pp 214-219 (1935)

February 1969

Standard statistical calculations.

Pitman and Sons

Testing for a single outlier in simple linear

regression.

Technometrics,

Outlier rejection from regression models.

(1965)

15, 4,

November 1973

Correspondence to ASME Com. PTC 19.1,

27 May 19681

Tables for an approximate test for cutliers in

linear models.

Technometrics,

17, .4,

November 1975
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Table 1

EXAMPLE OF ELEMENTAL ERROR TABLE
(ONE BASIC NEASUREMENT)

ELEMENTAL ERRORS OF BASIC MEASUREMENT (LOAD)
LOAD = Test Frame Load
Sensor = Bofors trunnion thrust load cell
S/N 50745
ERROR ERROR SOURCES BIAS
CATEGORIES LIMITS
{N]
1. CALIBRATION National force standards @ NPL | 2
HIERARCHY NPL
13
HBM transfer std
Bofors pure curves 19
2. DATA Small instrumentation errors
AQQUISITION included in Cat. {and 4 -
3. DATA Non-linearity of load
REDUCTION calibration 20
4. REAL AV(z) bias ==-- nil. —_
EFFECTS with "scheme 2" QOLZ reset
variation of reset OLZ,z” 25
Hysterisis with closing
throttle for target point 10
RSS TOTALS 41
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GLOSSARY

Note: This Glossary is intended for quick reference with enough explanation to

act as a convenient reminder of the main features of the methodology.

Accuracy

Actual
Results

Analysis

Average

Basic
Measurement,

xi

Bias (or
Systematic)

Error, B

Bias Limits,

+B

Curve Fitting

A conversational type of word used to convey a qualitative
impression of the goodness of measurements and results.
However, the word is so popular and has so many different
meanings, that it is now too confusing to use in a technical

sense.

The statistical analysis of the random scatter about the test
result, usually by analysis of a performance curve to calculate
its Residual Standard Deviation (RSD) and Rancdom Error Limit of
Curve Fit (RELCF). This involves only the precision errors
which appear with the test result. Bias errors, being

constant, are not revealed.

Synonymous with 'mean value'. The random uncertainty of an
average of 'n' points is I/J; times the uncertainty of a

single point, ie it is thereby improved.

(Sometimes called an 'Input Parameter’'.)

One of a number of variables (such as airmeter static pressure,
PSA, or fuel flow rate, QF, etc) which appear in the
mathematical expressions through which a test result is
calculated from the measurements. A separate Elemental Error
Table is published for each Basic Measurement - see Table 1 for

an example.

A constant error which lies somewhere within the limits 1B
The value of the error itself is unknown but the limits can be

estimated by 'Prediction Synthesis'.

The maximum plus/minus values within which a bias error is

expected to lie.

Synonymous with 'regression', a process by which a best curve,
of some pre-defined mathematical form, is fitted to the test
data by the method of least squares. The statistical

properties of a curve fit are similar to those of a mean value.
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GLOSSARY (continued)

Because engine performance results are displayed as graphical
correlations against other results, it is necessary to account
for the propagation of errors not only directly to the vertical
ordinate, y , but also indirectly via the horizontal abscissa,
z . Bias errors in z do not affect the y-value of a point

but they do shift the position of the curve (see Fig 17).

This embraces every factor and every measurement that has an
influence upon the 'Defined Test Result', not only in the test
itself, but also stretching all the way back through the

calibration hierarchy to the National Standards.

In ordinary usage, the 'Test Result' would be an engine
performance parameter {such as Net Thrust, FN or Specific Fuel
Consumption, SFC, etc) the determination of which is the object
of the test. 1In this document, the 'Defined Test Result' has
an extra special meaning for the purpose of uncertainty
assessment. For this it is necessary to declare exactly what

form the result is to be:

either a single point value, R
or a mean value, R

A
or a curve fit value, R

The number of independent points of data involved in a statis-
tical calculation. For a mean value, V =n=- 1 ., For a curve
fit v=n -p -1, where p is the power of the polynomial

curve.

These are the most fundamental errors that can affect each
Basic Measurement. They are accounted as various Error Sources

in four Error Categories.

For each Basic Measurement, there are four categories into
which it is convenient to group the various Error Sources for

accounting purposes, thus

(1) Calibration hierarchy
(2) Data acquisition

(3) Data reduction

(4) Real effects.
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Error

Classification

Error

Propagation

Error

Sources

Fossilisation

GLOSSARY (continued)

It is first necessary to declare exactly what is meant by the
‘Defined Test Result', for example an SFC curve. Then any
error which produces random scatter in that result is
classified as 'Precision', and any error which remains constant

(and hence unseen) in that result is classified as 'Bias’.

The Bias Limits of each Elemental Error within each Error
Category, Jj , are first assessed and accounted in a separate

table for each Basic Measurement, xj; . These are combined

separately by root-sum-squares, thus
. = 2
B; -\’)j: Bj,

and recorded at the bottom of the separate tables (eg see
Table 1). These B; values for each Basic Measurement, xi ,
are then propagated to the Test Result, Ry , by means of the
appropriate Influence Coefficients, and again combined by root-

sum-squares, thus

<

By = 2 [eiKB;]

to give the total effect on each test result (eg see Table 2).

In principle, similar prediction synthesis could be applied to
the Precision Indices but, in RAE practice at Pyestock, it is
considered better to assess this by Actual Results Analysis

(qv).

These are the most fundamental origins to which the Elemental

Errors can be ascribed, within each Error Category.

Random errors which occur before the start of the engine test
run, for example during an instrument calibration, will leave a
small fixed error in the calibration curve. This fixed error
is then propagated to the engine test. Thus such effects of
random errors are 'fossilised' into bias errors in the engine

test result.
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GLOSSARY (continued)

(The alternative name is ‘'Normal Distribution'.)

The bell-shaped probability distribution of random variables,
which is described in all text books of statistics. The most
likely value is the mean value, while 95% of values are found
within 220, where ¢ is the theoretical standard deviation.
In practical terms, © is replaced by the Precision Index,

s , or by the Residual Standard Deviation, RSD

The rate of change of a Test Result, Ry , with respect to a

Basic Measurement, Xxj

%y Ry

or 8{k Rk aXi

in relative, or percentage form.

A random variable, assumed to come from a Gaussian distribu-
tion, which lies somewhere within the limits *ts, or *tRSD.

The presence of such errors is shown by the scatter of points
about a mean value, or about a curve fit. The value of 's' or
'RSD' is found by Actual Results Analysis, and Student's "t" is

extracted from statistical tables.

The experimental standard deviation of the Gaussian distribu-

tizn from which the Precision Errors arise. 1In principle, the
value of 's' could be estimated by Prediction Synthesis but it
is RAE(P) practice to calculate it from statistical analysis of

actual data.

This is important as the only way to assess the effects of bias
errors. (Precision errors can also be included but these are
best left to actual results analysis.) Every error source in
the defined measurement process is examined and assessed for
elemental bias limits, with a separate table for each basic
measurement {or input parameter). These bias limits are ther
propagated to the test result by means of influencez

coefficients, and combined to predict the overall effect.
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Probability

Probability

Distribution

RELCF

RELIP

Residual
Standard

Deviatiorn, RSD

Student's "t

GLOSSARY (continued)

The likelihood of a value being realised. The word

'probability' is synonymous with ‘relative frequency'.

In diagrammatic form, the horizontal axis shows all possible
values of a variable (x , say) while the vertical axis shows
the 'probability density' of x , denoted as dP/dx (eg

Figs Al and A2 of Appendix A)., The probability of a value of

x occurring between A and B is given by

A
dp
[ ax & -
B
ie the area under the curve between A and B . The total
area under the curve
o0
P
5 o
dx

is equal to 1, ie total probability.

The random error limits of curve fit which describe a band
enclosed by the limits *RELCF on either side of a curve fit.

If there are no bias errors, the true curve will be expected to
lie somewhere within this band, at 95% confidence. The
statistical properties of RELCF are similar to thcse of a mean
value, le the band tRELCF is narrower than the scatter of

individual points.

The random error limits of individual points scattered atout a

curve fit. These limits are approximated by *2RSD.

The standard deviation of the residual scatter of points about
a curve fit. It is calculated by statistical methods in Actual

Results Analysis.

A factor, extracted from statistical tables against the
appropriate degrees of freedom, to give the confidence limits
tts, or *tRSD, within which a precision error is expected t<

lie. The confidence level is usually taken to be 95%.




63

GLOSSARY (concluded)

Uncertainty This word is used instead of 'Accuracy' in a technical treat-
ment, such as the present document. Its numerical value is the
half-range of an interval within which the error is expected to
lie. Uncertainty has two components of error, bias and
precision, which may be combined in alternative ways. Thus,

for the Uncerlainty of a single point,

Uaga = B + 2s

or

Upss = VB2 + (28)2 .

(Note: The Precision Index, s , could be replaced by the RSD.)
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NOTATION
(see Glossary for detailed explanations)
Roman symbols Description
B bias limit
BLCF bias limit of curve fit
CF curve fit
CLags 95% confidence limit
DMP defined measurement process
FNRD net thrust, referred to desired conditions
G a number from a Gaussian distribution
n number of peoints
NHRD high pressure shaft speed, referred to desired conditions
P probability (ie relative frequency)
P702 engine pressure ratio = P7/pP2
R either (a) a test result
or (b) a number from a random rectangular distribution
RELCF random error limit of curve fit
RELIP random error limit of individual points
RSD residual standard deviation
s precision index (ie experimental sample standard deviation)
SFCRD specific fuel consumption, referred to desired conditions
TV true value
t Student's "t factor, usually for 95% confidence
Uadd additive uncertainty = (B + ts)
Urss root-sum-square uncertainty = VBZ + (ts)?
UETP uniform engine test programme
U, random uncertainty = ts
WALRD engine inlet air flow rate, referred to desired conditions
x a basic measurement
Yy a main test result, plotted against graph ordinate
z a secondary test result, plotted against graph abscissa

(ie a correlating result)

B AR




Greak

symbols

Superscripts

Suffixes

T™ B

i

117¢

NOTATION (concluded)
Description

a bias (systematic) error

a precision (random) error

65

influence coefficient of a result Ry to a basic measurement, xi

3xi

theoretical population standard deviation

mean value

curve fit value

general basic measurement
general source of elemental error

general test result
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